DIS as $x \rightarrow 1$

DIS in moment space is a nice example of the OPE.

Take moments

$$M_N = \int_0^1 \mathrm{d}x \ x^{N-1} F(x, Q^2)$$

(use $\bar{N}=Ne^{\gamma_E}$)

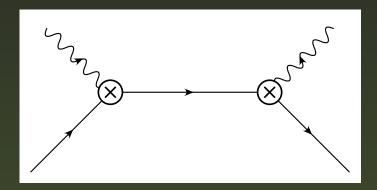
Scales:

Hard: Q^2 Jet: $\frac{Q^2}{\bar{N}}$ Soft: $\frac{Q^2}{\bar{N}^2}$

QCD: Λ_{QCD}^2

Jet: $Q^2(1-x)$

Generic x

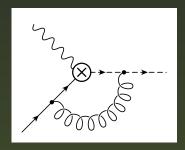


DIS at generic values of x: Do the OPE at Q, and match onto $C_N(Q)$ and operators $O_N(Q)$. The operators are moments of the parton distribution function

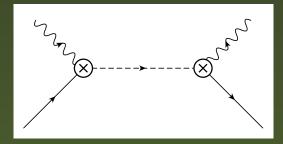
$$\bar{\psi}(x) \gamma^+ W(x,0) \psi(0)$$

$x \longrightarrow 1$

Break up the coefficient into the hard part at Q^2 :



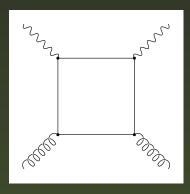
Jet part at Q^2/\bar{N} :



Left with the parton distribution at $\Lambda_{\rm QCD}$.

Regions

Compute scattering off a parton:

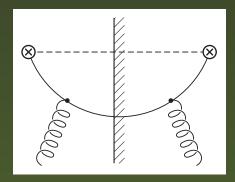


$$g_{1G} = h \frac{\alpha_s}{4\pi} \left[(2x - 1) \ln \frac{Q^2(1 - x)}{m^2 x - p^2 x^2 (1 - x)} + 3 - 4x + \frac{p^2 x (1 - x)}{m^2 - p^2 x (1 - x)} \right].$$

 $Q^2(1-x)\sim Q^2/\bar{N}$, $m^2\sim \Lambda_{\rm QCD}^2$, and $p^2(1-x)\sim \Lambda_{\rm QCD}^2/\bar{N}$ [Messenger scale $p^2(1-x)$ needs off-shellness]

$$O_{\Delta q}(k^{+}) = \frac{1}{4\pi} \int dz^{-} e^{-iz^{-}k^{+}} [\bar{\psi}(z^{-})W(z^{-})\gamma^{+}\gamma_{5}\psi(0) + \bar{\psi}(0)W^{\dagger}(z^{-})\gamma^{+}\gamma_{5}\psi(z^{-})]$$

Using an off-shell gluon target gives



$$f_{\Delta q/G} = \frac{\alpha_s}{2\pi} \left[(2x-1) \ln \frac{\mu^2}{m^2 - p^2 x (1-x)} - 1 + \frac{m^2}{m^2 - p^2 x (1-x)} \right],$$

This gives:

$$\hat{g}_{1G} = \frac{\alpha_s}{4\pi} \left[(2x - 1) \ln \frac{Q^2(1 - x)}{\mu^2 x} + 3 - 4x \right].$$

Depends on the jet scale $Q^2(1-x)$. All dependence on m^2 and $p^2(1-x)$ has dropped out.

EFT is used to compute perturbative quantities at Q^2 and Q^2/\bar{N} .

All scales $\Lambda_{\rm QCD}$ and below are included in the non-perturbative matrix element of the parton distribution function.

The parton diagram depends on m^2 and $p^2(1-x)$. One can take a well-defined parton distribution f that depends on $\Lambda_{\rm QCD}$, and break it up into two parts based on a method of regions computation of a perturbation theory integral, $f=S\otimes M$.

The different pieces S and M can depend on the messenger scale, but the physical cross-section depends only on the parton distribution f which does not depend on the messenger scale.

In perturbation theory, with $m^2=0$ and $p^2\neq 0$, one can have $q\bar{q}$ states with invariant mass $p^2(1-x)$. But if $m^2\neq 0$, then the states are cutoff by $4m^2$. In QCD, there are no low-mass states.

$$m^2 - p^2 x (1-x)$$

Method of regions — use to determine which perturbative modes are integrated out, rather than which non-perturbative modes are retained.